TCP/UDP-Based Exploitation DDoS Attacks Detection Using AI Classification Algorithms with Common Uncorrelated Feature Subset Selected by Pearson, Spearman and Kendall Correlation Methods

Author:

Dasari Kishore Babu,Devarakonda Nagaraju

Abstract

The Distributed Denial of Service (DDoS) attack is a serious cyber security attack that attempts to disrupt the availability security principle of computer networks and information systems. It's critical to detect DDoS attacks quickly and accurately while using as less computing power as possible in order to minimize damage and cost efficient. This research proposes a fast and high-accuracy detection approach by using features selected by proposed method for Exploitation-based DDoS attacks. Experiments are carried out on the CICDDoS2019 datasets Syn flood, UDP flood, and UDP-Lag, as well as customized dataset. In addition, experiments were also conducted on a customized dataset that was constructed by combining three CICDDoS2019 datasets. Pearson, Spearman, and Kendall correlation techniques have been used for datasets to find un-correlated feature subsets. Then, among three un-correlated feature subsets, choose the common un-correlated features. On the datasets, classification techniques are applied to these common un-correlated features. This research used conventional classifiers Logistic regression, Decision tree, KNN, Naive Bayes, bagging classifier Random forest, boosting classifiers Ada boost, Gradient boost, and neural network-based classifier Multilayer perceptron. The performance of these classification algorithms was also evaluated in terms of accuracy, precision, recall, F1-score, specificity, log loss, execution time, and K-fold cross-validation. Finally, classification techniques were tested on a customized dataset with common features that were common in all of the dataset’s common un-correlated feature sets.

Publisher

International Information and Engineering Technology Association

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3