Author:
Mohammed Habib,Tannouche Adil,Ounejjar Youssef
Abstract
The fight against weed remains one of the major challenges in agriculture to improve land productivity. The first and most important step of this fight is to detect and locate this weed. Artificial intelligence has played a very important contribution in this detection. Several applications have been developed using Deep Learning techniques to detect and identify weed, but the variety of weed types complicates this operation. We propose a Deep Learning technique to detect and localize the crop, by training the pretrained Faster RCNN ResNet model with a rich dataset. We developed an algorithm able to detect and ultra-localize the pea crop with a prediction up to 100%. The obtained results show the feasibility of this method to distinguish the crop among weed.
Publisher
International Information and Engineering Technology Association
Subject
Artificial Intelligence,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献