An Adaptive Image Fusion Algorithm in the NSST Based on CDF 9/7 for Neurodegenerative Diseases

Author:

Abdelfatih Bengana,Ismail Boukli Hacene

Abstract

The neurodegenerative disease such as: Parkinson's disease (PD), mild Alzheimer’s affects many people and has a serious influence on their life, With the quick advancement of computer-aided diagnostic (CAD) methods, early detection is crucial since effective treatment halts the spread of the disease. Image fusion is useful for medical diagnostics. In this paper we propose a multi-modality medical image fusion algorithm in NSST domain. Shearlets (NSST) are decomposed similarly to contourlets (NSCT), except that instead of applying the Laplacian pyramid followed by directional filtering, shearlets use a shear matrix. In this article the Biorthogonal CDF9/7 filter is applied in the shift-invariant shearlet filter banks, then the coefficients of low frequency bands are selected using maximum rule, and using the gradient in each subband high frequency image to motivate the modified pulse coupled neural networks (Modified PCNN). Finally reverse IHS to get the fused color image, all this to optimize the calculation performance and improve the characteristics of the fused image for medical diagnosis. Our approach was validated with several brain diseases modalities: Alzheimer’s…etc. The findings reveal that the suggested image fusion technique has a higher quality than those fused by previous algorithms existing.

Funder

Directorate-General of Scientific Research and Technological Development

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3