Author:
Baskar Chanthini,Govindasamy Guga Priya,Anbalagan Sasithradevi,Roomi Sindha Mohamed Mansoor
Abstract
Advancement in information and communication technology has led to tremendous development in graphics techniques. Evolving multimedia tools are used to generate high quality Computer Graphics (CG) images. These images have wide applications in domains like video gaming, augmented reality, and virtual reality and many other. Computer graphic images are also used illegally in criminal activities. This article proposes an effective transfer learning approach to classify CG and Photographic (PG) images available in small scale dataset. Initially, pre-trained models such as AlexNet, GoogleNet, ResNet50, VGG-18 and SqueezeNet were modified and fine-tuned appropriately. Based on the validation accuracy, SqueezeNet was adapted as learning model for extracting deep features for classification. To evaluate the performance of squeezeNet, Columbia dataset and Photo realistic dataset were used. Finally, the performance of the proposed model was compared with state-of-the- art transfer learning approaches to prove its efficacy. Accuracy of 93.75% was attained using SqueezeNet for the folding ratio 80:20 when the input data is augmented.
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献