A Deep Learning- Image Based Approach for Detecting Cracks in Buildings

Author:

Jayaraju Priyadarshini,Somasundaram Karthiyaini,Suprakash Adapala Sunny,Muthusamy Shanmugasundaram

Abstract

Buildings expand and contract in response to their environment, which results in cracks in the structure. This can pose a serious threat to the people who use it, and these movements are frequently too small to be observed, and thus go unnoticed. Cracks can be caused by a variety of factors, including defects in the construction process, ground movement, foundation failure, and decay of the building fabric. If a structure is unable to accommodate this movement, cracking is likely to occur, posing a serious risk to the building's structural integrity. Only after cracks are identified can they be treated, and existing manual methods of sketching the crack patterns are highly subjective to the person performing the analysis, are frequently constrained by high costs, equipment and tool availability, and are extremely time consuming. In this paper, 40,000 images divided into two and categorized into positive and negative cracks are used as input and the presence of cracks is detected using a deep learning technique. The following crack types are included in the experimentation: hairline, stepped, vertical, and horizontal. In comparison to conventional image processing and other deep learning-based techniques, the proposed Convolutional Neural Network (CNN) achieves significantly higher accuracy than the Recurrent Neural Network (RNN). This paper’s objective is to create a model which can detect the cracks through deep learning methodology, and this will be the innovative region in crack detection using neural net framework.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances in crack detection technologies for structures: a survey of 2022-2023 literature;Frontiers in Built Environment;2024-07-30

2. Image processing and Machine learning in Concrete Cube Crack detection;2023 International Conference on New Frontiers in Communication, Automation, Management and Security (ICCAMS);2023-10-27

3. Influence of Na2SiO3/NaOH Ratio on Calcined Magnesium Silicate Based Geopolymer—Experimental and Predictive Study;Journal of Wuhan University of Technology-Mater. Sci. Ed.;2023-10

4. Convolutional Neural Network for Predicting Failure Type in Concrete Cylinders During Compression Testing;Civil Engineering Journal;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3