Identify Attractive and Unattractive Individuals Based on Geometric Features Using Neural Network

Author:

Ahmadimehr Shakiba,Moridani Mohammad Karimi

Abstract

This paper aims to explore the essence of facial attractiveness from the viewpoint of geometric features toward the classification and identification of attractive and unattractive individuals. We present a simple but useful feature extraction for facial beauty classification. Evaluation of facial attractiveness was performed with different combinations of geometric facial features using the deep learning method. In this method, we focus on the geometry of a face and use actual faces for our analysis. The proposed method has been tested on, image database containing 60 images of men's faces (attractive or unattractive) ranging from 20-50 years old. The images are taken from both frontal and lateral position. In the next step, principle components analysis (PCA) was applied to feature a reduction of beauty, and finally, the neural network was used for judging whether the obtained analysis of various faces is attractive or not. The results show that one of the indexes in identifying facial attractiveness base of science, is the values of the geometric features in the face, changing facial parameters can change the face from unattractive to attractive and vice versa. The experimental results are based on 60 facial images, high accuracy of 88%, and Sensitivity of 92% is obtained for 2-level classification (attractive or not).

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3