Author:
Wu Jian-Da,Chen Bo-Yuan,Shyr Wen-Jye,Shih Fan-Yu
Abstract
The intelligent transportation system is one of the most important constructions of urban modernization. Traffic flow monitoring technology is the most essential information in the intelligent transportation system. With the advancements in instrumentation, computer image processing and communication technology, computerized traffic monitoring technologies have become feasible. This study captures traffic information using surveillance cameras installed at higher locations. The YOLO object detection technology is used to identify vehicle types. The system principle uses image processing and deep convolutional neural networks for object detection training. Vehicle type identification and counting are carried out in this study for straight-line bidirectional roads, and T-shaped and cross-type intersections. A counting line is defined in the vehicle path direction using the object tracking method. The center coordinate of the object moves through the counting line. The number of motorcycles, small vehicles, and large vehicles were counted in different road sections. The actual number of vehicles on the road was compared with the number of vehicles measured by the system. Three separate counting periods were used to define the results using the confusion matrix.
Funder
Ministry of Science and Technology of Taiwan, Republic of China
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献