Author:
Kuraparthi Swaraja,Reddy Madhavi K.,Sujatha C.N.,Valiveti Himabindu,Duggineni Chaitanya,Kollati Meenakshi,Kora Padmavathi,Sravan V.
Abstract
Manual tumor diagnosis from magnetic resonance images (MRIs) is a time-consuming procedure that may lead to human errors and may lead to false detection and classification of the tumor type. Therefore, to automatize the complex medical processes, a deep learning framework is proposed for brain tumor classification to ease the task of doctors for medical diagnosis. Publicly available datasets such as Kaggle and Brats are used for the analysis of brain images. The proposed model is implemented on three pre-trained Deep Convolution Neural Network architectures (DCNN) such as AlexNet, VGG16, and ResNet50. These architectures are the transfer learning methods used to extract the features from the pre-trained DCNN architecture, and the extracted features are classified by using the Support Vector Machine (SVM) classifier. Data augmentation methods are applied on Magnetic Resonance images (MRI) to avoid the network from overfitting. The proposed methodology achieves an overall accuracy of 98.28% and 97.87% without data augmentation and 99.0% and 98.86% with data augmentation for Kaggle and Brat's datasets, respectively. The Area Under Curve (AUC) for Receiver Operator Characteristic (ROC) is 0.9978 and 0.9850 for the same datasets. The result shows that ResNet50 performs best in the classification of brain tumors when compared with the other two networks.
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献