Author:
Afify Heba M.,Darwish Ashraf,Mohammed Kamel K.,Hassanien Aboul Ella
Abstract
The detection of COVID-19 from computed tomography (CT) scans suffered from inaccuracies due to its difficulty in data acquisition and radiologist errors. Therefore, a fully automated computer-aided detection (CAD) system is proposed to detect coronavirus versus non-coronavirus images. In this paper, a total of 200 images for coronavirus and non-coronavirus are employed based on 90% for training images and 10% testing images. The proposed system comprised five stages for organizing the virus prevalence. In the first stage, the images are preprocessed by thresholding-based lung segmentation. Afterward, the feature extraction technique was performed on segmented images, while the genetic algorithm performed on sixty-four extracted features to adopt the superior features. In the final stage, the K-nearest neighbor (KNN) and decision tree are applied for COVID-19 classification. The findings of this paper confirmed that the KNN classifier with K=3 is accomplished for COVID-19 detection with high accuracy of 100% on CT images. However, the decision tree for COVID-19 classification is achieved 95% accuracy. This system is used to facilitate the radiologist’s role in the prediction of COVID-19 images. This system will prove to be valuable to the research community working on automation of COVID-19 images prediction.
Publisher
International Information and Engineering Technology Association
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献