An Effective Recommendation System to Forecast the Best Educational Program Using Machine Learning Classification Algorithms

Author:

Dhar Joy,Jodder Asoke Kumar

Abstract

After passing the 10th class, every student is eager to know which educational program will be the best for their higher education to match their career goal. Sometimes, they are very much confused to decide the best path for their higher education, and they need help to determine the best suitable academic program to develop their careers and achieve their goal. So, we introduce an effective recommendation system to forecast each student's best educational program for their career development. This proposed research is accomplished by utilizing machine learning (ML) approaches to forecast every student's best academic path based on their past academic performances and recommend them the best suitable academic program for their higher studies. Class 10th standard passing student data are supplied to this automated system, and a correlation-based feature selection approach is applied to extract the relevant features for each academic program. This study utilizes multiple ML algorithms to provide the best results and forecast each student's academic performance and select the best model based on their performance for each educational program. Hence, the best-selected model and related features are involved in the recommendation process to provide the best suitable academic path for achieving every student's career goals.

Publisher

International Information and Engineering Technology Association

Subject

Information Systems

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3