An Integrated Signal Allocation Model with Effective Collision Resolution Model for Performance Enhancement of Wireless Sensor Networks

Author:

Lalitha Aswani,Reddy Gangireddy Harinatha

Abstract

A Wireless Sensor Network (WSN) differs from conventional wireless or wired networks in that it interacts with the environment. Orthogonal Frequency Division Multiplexing (OFDM) was investigated as a possible interface technology for making effective use of bandwidth. Such networks have been proposed for a variety of purposes such as search and rescue, disaster assistance, and smart positioning systems. These applications often require a large number of wireless sensors that are powered by batteries and are designed for long-term, human-free deployment. Collisions between network nodes can significantly degrade performance in WSNs. Although increased bandwidth facilitates wireless access to high data frequencies, it is prohibitively expensive to increase due to spectrum limits. This necessitates making good use of the available bandwidth. OFDM has been considered as a possible interface mechanism for efficiently utilising bandwidth. While many signals available in WSN technology can be employed to mitigate collisions, multi-signal allocations may have a significant impact on the efficiency of multistage communications. Real-time multimedia flow raises the chance of sensor network failures and congestion, which reduces the efficiency of Quality of Service (QoS). The main goal of the Signal Allocation Scheme is to allocate an appropriate number of signals to any node in order to use professional bandwidth and assure QoS. Load balancing is intended to measure and prevent collisions caused by the number of available slots in the frame. Preparation is another important component in preventing collisions because it decreases delay and optimises energy utilisation. In this paper, an Integrated Signal Allocation Model with Effective Collision Resolution Model (ICAM-ECR) is used to deploy non-overlapping signals dynamically for varying application loads based on expected bandwidth estimation. The suggested model is compared to standard methods, and the findings reveal that the proposed model outperforms existing models.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3