Design and Application of a Slow Feature Algorithm Coupling Visual Selectivity and Multiple Long Short-Term Memory Networks

Author:

Zhao Yanming,Yang Hong,Su Guoan

Abstract

In the traditional slow feature analysis (SFA), the expansion of polynomial basis function lacks the support of visual computing theories for primates, and cannot learn the uniform, continuous long short-term features through selective visual mechanism. To solve the defects, this paper designs and implements a slow feature algorithm coupling visual selectivity and multiple long short-term memory networks (LSTMs). Inspired by the visual invariance theory of natural images, this paper replaces the principal component analysis (PCA) of traditional SFA algorithm with myTICA (TICA: topologically independent component analysis) to extract image invariant Gabor basis functions, and initialize the space and series of basis functions. In view of the ability of the LSTM to learn long and short-term features, four LSTM algorithms were constructed to separately predict the long and short-term visual selectivity features of Gabor basis functions from the basis function series, and combine the functions into a new basis function, thereby solving the defect of polynomial prediction algorithms. In addition, a Lipschitz consistency condition was designed, and used to develop an approximate orthogonal pruning technique, which optimizes the prediction basis functions, and constructs a hyper-complete space for the basis function. The performance of our algorithm was evaluated by three metrics and mySFA’s classification method. The experimental results show that our algorithm achieved a good prediction effect on INRIA Holidays dataset, and outshined SFA, graph-based SFA (SFA), TICA, and myTICA in accuracy and feasibility; when the threshold was 6, the recognition rate of our algorithm was 99.98%, and the false accept rate (FAR) and false reject rate (FRR) were both smaller than 0.02%, indicating the strong classification ability of our approach.

Funder

Key R&D Projects in Hebei Province of China

Social Science Foundation of Hebei Province of China

Science and Technology Planning Project of Hebei Province of China

National Science and Technology Infrastructure Program

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3