Numerical and Experimental Study of Natural Convection in a Tunnel Greenhouse Located in South West Algeria (Adrar Region)

Author:

Belalem Mohammed Salah,Elmir Mohammed,Tamali Mohammed,Mehdaoui Razli,Missoum Abdelkrim,Chergui Toufik,Bezari Salah

Abstract

In this work, we propose to experimentally and numerically study the natural convection in laminar regime in an agricultural greenhouse located in South West of Algeria and more precisely in the Adrar area. The numerical study is two-dimensional and was carried out on a tunnel greenhouse with an area of 180m2 located in Adrar in the southwest of Algeria (Latitude: 27°52′27″N, longitude: 0°17′37″W, the laltitude above sea level is 257 m), with polyethylene cover and houses two rows of tomato plants. The experimental study was made during the winter or flowering period of tomato plants (February) when the temperature difference outside the greenhouse is maximum: T min = 3℃ at night and T max = 20℃ the day. We used a calculate code based on the finite element method to numerically simulate the phenomenon of heat transfer inside the greenhouse. The results of the numerical simulation are in the form of isotherms, streamlines and variations in temperature and speed in the greenhouse. The value of the temperature calculated by numerical simulation at the position where the sensor has been placed will be compared with that measured by the sensor. It was concluded that to have a favorable environment for the growth of tomatoes, we must keep the openings closed especially during the night without needing a heating system, especially in this region characterized by a hyper arid climate.

Funder

General Directorate of Scientific Research and Technological Development (DGRSDT)

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3