Effect of Attack Angle of Concave and Convex Winglets Vortex Generators on Thermal-Hydraulic Performance of Fin and Tube Heat Exchangers with Field Synergy Principle

Author:

Syaiful ,Yunianto Bambang,Salsabila Carisya Dara,Fajar T.K. Berkah,Soetanto Maria F.

Abstract

In fin and tube heat exchangers, the gas passing through the fin has a lower thermal conductivity than the fluid passing through the tube. The low thermal conductivity brings a high thermal resistance, which suppresses the heat transfer rate. A common practice to enhance fin-side heat transfer is to generate longitudinal vortex by mounting vortex generators (VGs) on the fin. This paper aims to investigate how longitudinal vortex generator (LVG) improves heat transfer and pressure drop. Numerical simulations were carried out to analyze three types of VGs. The installation of VGs was varied with the attack angle changing from 10°, 15°, to 20° with a 1-3-4-7 VG arrangement on the tube. The flow velocity was expressed in Reynolds number (Re) between 364 and 689. The enhancement of heat transfer rate and improvement of pressure drop were analyzed between three types of VG, three different attack angles, and four types of winglet installation, compared to baseline. The simulation results show that the highest convective heat transfer coefficient (84.85%) was achieved by the VG composed of seven concave delta winglet pairs (CDWPs) at the attack angle of 20° and Re = 689; CDWP VG provides the highest heat transfer improvement among all cases.

Funder

Research and Service Institution (LPPM) of Diponegoro University, Indonesia

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3