Abstract
Heavy-duty truck cooling systems have been given low importance in the enhancement and research of heat transfer performance since off-highway conditions are hard to evaluate in laboratory essays or CFD studies. The present work is performed to evaluate the heat transfer performance of copper finned-flat tubes used in heavy-duty truck radiators. Parameters were measured in the field of two heavy-duty truck engines cooling systems. In both vehicles water is used as the cooling fluid. The results showed that the Air convective heat transfer coefficient and Overall heat transfer coefficient on the air side decreases as the Reynolds Number decreases and increases as passing through the first row to the fourth row. Additionally, the mass air flow and heat transfer rate have very high values in comparison from normal automotive radiators' operative conditions, since heavy-duty truck radiators require a large heat transfer rate. The analysis presented in this paper was used for a heavy-duty truck radiator but can be extended to any equipment with finned flat tubes. A more accurate study should be done considering vibrations and different environmental conditions.
Publisher
International Information and Engineering Technology Association
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献