Abstract
This paper presents the main results of the research developed by the author in his postdoctoral investigations on heat transfer calculations during film condensation inside tubes. The elements studied are combined in an analysis expression that provides a reasonable fit with the available experimental data, which includes a total of 22 fluids, including water, refrigerants and a wide range of organic substances, which condense inside horizontal, inclined and vertical tubes. These experimental data were obtained from the reports of 33 sources. Available data covers tube diameters from 2 to 50 mm, mass flow rates from 3 to 850 kg/(m2s), reduced pressures ranging from 0.0008 to 0.91, values for single-phase from 1 to , Reynolds number for two-phase from 900 to 594390, Reynolds number for single-phase from 65 to 84950 and vapor quality from 0.01 to 0.99. The mean deviation found for the analyzed data for horizontal tubes was 13.4%, while for the inclined and vertical tubes data the mean deviation was 14.9%. In all cases, the agreement of the proposed model is good enough to be considered satisfactory for practical design.
Publisher
International Information and Engineering Technology Association
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献