CFD Comparative Study Between Different Forms of Solar Greenhouses and Orientation Effect

Author:

Aissa Mohammed,Boutelhig Azzedine

Abstract

Only scarce studies that were adopted have considered two properties, the structure safety and energy, where the aero-dynamic and energetic phenomena were taken into account simultaneously in the agricultural greenhouses area. In fact, in this numerical study, the response of the greenhouse has been investigated in outside climate conditions, by considering the orientation relatively to the wind direction velocity and solar trajectory. A resolution of the physical problem combined between the thermal and dynamical fluid flow equations have been based on the Ansys Fluent software. The results showed that the difference between inside and outside air temperature of greenhouse has been strongly affected by the reorientation of the tunnel greenhouse structure, or by the design of the tunnel structure that was adopted in the dome and chapel shape. Moreover, the safety properties of greenhouse structure linked to the drag stress can be developed when based on the interaction fluid-structure analysis. In this view, a temperature profile evolution versus different heights inside greenhouse was highlighted. As well as like continues of our previous study of the drag evolution over tunnel design body proved by the results found in the literature will be compared with chapel and dome designs.

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling the Temperature Inside a Greenhouse Tunnel;AgriEngineering;2024-01-25

2. Comparative Study Between Two Greenhouses with Different Covering Methods;2023 14th International Renewable Energy Congress (IREC);2023-12-16

3. A review study on the design and control of optimised greenhouse environments;Journal of Tropical Ecology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3