Author:
Daghab Hamza,Kaddiri Mourad,Raghay Said,Arroub Ismail,Lamsaadi Mohamed,Rayhane Hassan
Abstract
In this paper, numerical study on natural convection heat transfer for confined thermo-dependent power-law fluids is conducted. The geometry of interest is a fluid-filled square enclosure where a uniform flux heating element embedded on its lower wall is cooled from the vertical walls while the remaining parts of the cavity are insulated, without slipping conditions at all the solid boundaries. The governing partial differential equations written in terms of non-dimensional velocities, pressure and temperature formulation with the corresponding boundary conditions are discretized using a finite volume method in a staggered grid system. Coupled equations of conservation are solved through iterative Semi Implicit Method for Pressure Linked Equation (SIMPLE) algorithm. The effects of pertinent parameters, which are Rayleigh number (103 ≤ Ra ≤ 106), power-law index (0.6 ≤ n ≤ 1.4), Pearson number (0 ≤ m ≤ 20) and length of the heat source (0.2 ≤ W ≤ 0.8) on the cooling performance are investigated. The results indicate that the cooling performance of the enclosure is improved with increasing Pearson and Rayleigh numbers as well as with decreasing power-law index and heat source length.
Publisher
International Information and Engineering Technology Association
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献