Performance Analysis of an Adsorption Refrigeration System Working on Activated Carbon/Methanol Pair Using Finned Tube Type Adsorber Bed

Author:

Soni Palash,Lolalis Sruthi,Mazumdar Bidyut,Bhowmick Shubhankar,Gaba Vivek Kumar

Abstract

Adsorption refrigeration, being a unique and eco-friendly technology, has gained popularity over conventional refrigeration systems. The present study is aimed at developing an annular finned tube adsorber model which serves as a thermal compressor in adsorption refrigeration systems. The mathematical model is addressed numerically using finite difference discretization method and explicit scheme was used for the solution. The generalized model has been simulated for activated carbon–methanol working pair. The system has an optimum cycle time of 1800s. It was found to have a highest refrigeration capacity of 260.66 kJ/kg at a regeneration temperature of 393 K and evaporator temperature of 283 K. The highest COP (Coefficient of Performance) achieved by the system is 0.3706 at a regeneration temperature of 353 K and evaporator temperature of 283 K. A highest SCP (Specific Cooling Power) of 144.8 W/kg was obtained at an evaporator temperature of 283 K and regeneration temperature of 393 K.

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3