Thermal Stress Analysis and Spatial Data Matching of Urban Underground Pipelines

Author:

Liang Xiaoqiang,Hu Da,Jiang Lei,Li Yongsuo,Yang Xian

Abstract

The mining of thermal data of underground pipelines is very important for the construction of urban underground pipeline network data matching model and the proposal of large-scale pipeline spatial data matching mechanism. The existing temperature field calculation and stress field simulation methods for thermal pipelines are quite mature already, but they generally pay less attention to the overall connection features of the underground pipeline network and the local details of network nodes, and the deep-level sharing and utilization of the thermal stress data of pipelines is insufficient during the process of spatial data matching of the pipeline network. To this end, this paper conducted a research on thermal stress analysis and spatial data matching of urban underground pipelines. First, the paper gave a theoretical analysis on the temperature field and stress field of underground pipelines and obtained the simulation calculation results; then it elaborated on the calculation of the similarity of underground pipeline network information, proposed a method for spatial data matching, and gave the corresponding algorithm flow; at last, experimental results verified the reliability of the simulation calculation results of the thermal stress of underground pipelines and the effectiveness of the proposed spatial data matching method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan

Scientific Research Project of Education Department of Hunan Province

Science and Technology Innovation Project of Yiyang City

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3