Research on the Damping Performance of Mining Highly Efficient Water-Retaining Colloidal Material Against the Spontaneous Combustion of Coal

Author:

Jin Yongfei,Yan Li,Liu Yin,Li Chuansheng

Abstract

In order to solve the shortcomings of the traditional mining anti-extinguishing gel material such as low strength and poor water retention, a high hydrocolloid anti-extinguishing material was developed with sodium alginate and light calcium carbonate as the base material and gluconolactone as the retarder, which was mixed and reacted. The base material ratio of highly efficient water-retaining colloidal material for coal void filling was determined as 2% SA + 0.5% PCC + 1% GDL with a moulding time of 4.5 min, while the base material ratio of highly efficient water-retaining colloidal material for extinguishing high temperature fires was 2.5% SA + 1% PCC + 1% GDL with a moulding time of 2.5 min. The highly efficient water-retaining colloidal material was found to reduce the concentration of signature gas and delay the characteristic temperature point and increase the activation energy of coal oxidation, which indicates that the highly efficient water-retaining colloidal material can effectively inhibit the spontaneous combustion process of coal at low temperature stage. Infrared spectroscopy experiments were conducted to investigate the microscopic resistance mechanism of the highly efficient water-retaining colloidal material, and the results showed that the highly efficient water-retaining colloidal material mainly reduce the activity of Ar-C-O-, -COO-, -CH3, -CH2 and -OH in coal to inhibit the spontaneous combustion of coal.

Publisher

International Information and Engineering Technology Association

Subject

Materials Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3