Application of Conductive Polymer-Based Hydrogel in Multi-robot Balance Control

Author:

Qiao Tianbo

Abstract

At present, the flexible electronic materials with both good flexibility and conductivity have become a major development trend of electronic materials in the future. Due to their flexibility in construction, controllable mechanical properties and electrical conductivity, the conductive polymer-based hydrogels (CPHs) are expected to become one of the candidate materials in flexible electronics and other fields, and have received extensive attention from researchers. However, the existing CPH systems generally have shortcomings such as low mechanical strength and single function. To this end, the authors attempt to construct a hydrogel using polyaniline (PANI) as the conductive component and polyacrylic acid (PAA) as the flexible component through in-situ polymerization and physical blending. The designed PAA/PANI conductive polymer-based hydrogel enjoys ultra-long stretchability and high strength. It can be used in the flexible strain sensors and pressure sensors to detect the step cycle of the multi-legged robot in real time, and adjust their rhythm during the walking gait, thereby achieving the physical balance. This paper provides a new idea for the application of the CPHs, and especially offers a wealth of theoretical foundation and practical experience for the research on its application to the flexible strain sensors.

Publisher

International Information and Engineering Technology Association

Subject

Materials Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3