A New Early Stage Diabetic Retinopathy Diagnosis Model Using Deep Convolutional Neural Networks and Principal Component Analysis

Author:

Mohammedhasan Mali,Uğuz Harun

Abstract

Diabetic retinopathy (DR) is a disease of the retina, which leads over time to vision problems such retinal detachment, vitreous hemorrhage, glaucoma, and in worse cases leads to blindness, which can initially be controlled by periodic DR-screening. Early diagnosis will lead to greater control of the disease, whereas performing retinal examinations on all diabetic patients is an unattainable need, as diabetes is a chronic disease and its global prevalence has been steadily increasing over the past few decades. According to recent World Health Organization statistics, about 422 million people worldwide have diabetes, the majority living in low-and middle-income countries. This paper proposes a new strategy that brings the strength of convolutional neural networks (CNNs) to the diagnosis of DR. Coupled with using principal component analysis (PCA) that performs dimension reduction to improve the diagnostic accuracy, the proposed model exploiting edge-preserving guided image filtering (E-GIF) that performs as a contrast enhancement mechanism, and in addition to smoothing low gradient areas, it also accentuates strong edges. Diabetic retinopathy causes progressive damage to the blood vessels in the retina to the extent that it leaves traces and lesions in the tissues of the retina. These lesions appear in the form of edges and when processing retinal images, we seek to accentuate these edges to enable better diagnosis of diabetic retinopathy symptoms. A new CNN architecture with residual connections is used, which performs very well in diagnosing DR. The proposed model is named with RUnet-PCA: Residual U-net Deep CNN with Principal Component Analysis. The well-known AlexNet, VggNet-s, VggNet-16, VggNet-19, GoogleNet, and ResNet models were adopted for comparison with the proposed model. Publicly available Kaggle dataset was employed for training exploring the DR diagnosis accuracy. Experimental results show that the proposed RUnet-PCA model achieved a diagnosis accuracy of 98.44% and it was extremely robust and promising in comparison to other diagnosis methods.

Funder

Scientific Research Project of Konya Technical University

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3