Application of Bokashi Fertilizer and Duration of Water Supply to Increase Growth, Yields, and Quality of Shallot in Dryland

Author:

Ansar Muhammad,Bahrudin ,Darman Saiful,Paiman

Abstract

This study aims to improve the growth, yield, and quality of LP-VoS bulbs by applying bokashi fertilizer from goat manure and regulating the duration of water supply with a sprinkler irrigation system. This research is a field that arranged in split-plot design. The main plot is the duration of irrigation water supply, consisting of three levels, 0.5; 1,0; and 1.5 hours. The subplot is giving organic fertilizer bokashi goat manure, which consists of two kinds, namely: without bokashi fertilizer and the addition of bokashi fertilizer 15 t.ha-1. Each treatment was repeated three times so that in total, there were 18 experimental plot units. The results showed that the duration of irrigation 0.5 hours at intervals of 3 days, followed by the application of 15 t.ha-1 bokashi organic fertilizer could increase the bulb circle of 'Lembah Palu' varieties.The use of bokashi organic fertilizer 15 t.ha-1 could increase soil moisture so it can growth, yields, and quality of shallot bulb. The duration of irrigation with a sprinkler system for 0.5-1.0 hours at intervals of 3 days could result in the growth of total dry weight and total leaf area per plant as well as the number of tubers per clump, fresh weight of tubers per clump and yield of tubers per hectare higher than treatment of water for 1.5 hours at intervals of 3 days. Water supply regulations and the use of bokashi organic fertilizers can increase the growth, yield, and quality of LP-VoS bulbs on dryland. For the cultivation of‘Lembah Palu’ varieties of shallots in dry land, it is necessary to apply organic fertilizers to increase the soil water content for increased production and quality.

Funder

A flagship research scheme of Directorate General of Higher Education

Publisher

International Information and Engineering Technology Association

Subject

General Engineering,General Agricultural and Biological Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3