Combined Spatial-Spectral Hyperspectral Image Classification Based on Adaptive Guided Filtering
Author:
Huang Liang,Nong Shenkai,Wang Xiaofeng,Zhao Xiaohang,Wen Chaoran,Nie Ting
Abstract
Hyperspectral image classification has a low accuracy in the face of a small training set. To solve the problem, this paper proposes a combined spatial-spectral hyperspectral image classification approach based on adaptive guided filtering. From coarse to fine classification, the local binary pattern (LBP) histogram features were improved, the spatial contrast description was enhanced, and enhanced spatial-spectral features were prepared through Gabor transform of different scales and directions, combined with super pixel blocks. Then, the pre-classification was completed by the support vector machine (SVM) classifier. To reduce noise interference, the pre-classification results were filtered again by a guided filter based on the adaptive regularization factor. To verify its effectiveness, the proposed approach was compared with the state-of-the-arts approaches through repeated experiments. The comparison shows that our approach achieved a high classification accuracy, while suppressing noise interference. This research provides a new tool for hyperspectral image classification with a small training set.
Funder
National Natural Science Foundation of China
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献