A New Framework Containing Convolution and Pooling Circuits for Image Processing and Deep Learning Applications with Quantum Computing Implementation

Author:

Yetiş Hasan,Karaköse Mehmet

Abstract

The resource need for deep learning and quantum computers' high computing power potential encourage collaboration between the two fields. Today, variational quantum circuits are used to perform the convolution operation with quantum computing. However, the results produced by variational circuits do not show a direct resemblance to the classical convolution operation. Because classical data is encoded into quantum data with their exact values in value-encoded methods, in contrast to variational quantum circuits, arithmetical operations can be applied with high accuracy. In this study, value-encoded quantum circuits for convolution and pooling operations are proposed to apply deep learning in quantum computers in a traditional and proven way. To construct the convolution and pooling operations, some modules such as addition, multiplication, division, and comparison are created. In addition, a window-based framework for quantum image processing applications is proposed. The generated convolution and pooling circuits are simulated on the IBM QISKIT simulator in parallel thanks to the proposed framework. The obtained results are verified by the expected results. Due to the limitations of quantum simulators and computers in the NISQ era, the used grayscale images are resized to 8x8 and the resolution of the images is reduced to 3 qubits. With developing the quantum technologies, the proposed approach can be applied for bigger and higher resolution images. Although the proposed method causes more qubit usage and circuit depth compared to variational convolutional circuits, the results they produce are exactly the same as the classical convolution process.

Funder

TUBITAK (The Scientific and Technological Research Council of Turkey)

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kuantum Programlama Açısından Kuantum Derleyicilerin Karşılaştırmalı Analizi ve IBMQ Uygulaması;Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi;2023-12-31

2. A YOLO-Based Method for Detection of Gate and Input in Quantum Circuits;Fırat Üniversitesi Mühendislik Bilimleri Dergisi;2023-09-01

3. Variational quantum circuits for convolution and window-based image processing applications;Quantum Science and Technology;2023-07-13

4. A Quantum-Classical Hybrid Classifier Using Multi-Encoding Method for Images;2023 27th International Conference on Information Technology (IT);2023-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3