Author:
Pugazhendhi Latchoumi Thamarai,Kothandaraman Raja,Karnan Balamurugan
Abstract
In general, visual clusters are preferred over large data sets; this is an attempt to take advantage of cluster techniques to reduce the mathematical complexity of small data sets. To identify the possibility of implementing the clustering technique in a small dataset, the wear observations of PLA/Cu composite samples printed using the Fused Deposition Model (FDM) is taken into consideration. In this study, the Self Organizing Map (SOM) tool as a non-supervised Neural Network (NN) is used to visualize the data. Here, SOM combinations with vector quantification and projection are used to identify or rank the wear machinability parameters on the new composite filament printed under different FDM conditions. The competitive layer in SOM will classify the given parameters of the wear machine (vectors) at any number of dimensions may be into several groups of layer neurons. The limitation of SOM is map size which cannot exceed 1000 units of training. However, for the small data set under consideration, the extent of these limits will not affect performance. The SOM algorithm developed for the study of wear provides the outlet within the acceptable range. In addition, the linear regression analysis is carried out for the output response to measure the wear characteristics of the machining observation.
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献