Author:
Ayyıldız Hakan,Kalaycı Mehmet,Tuncer Seda Arslan,Çınar Ahmet,Tuncer Taner
Abstract
In the medical diagnosis such as WBC (white blood cell), the scattergram images show the relationships between neutrophils, eosinophils, basophils, lymphocytes, and monocytes cells in the blood. For COVID-19 detection, the distributions of these cells differ in healthy and COVID-19 patients. This study proposes a hybrid CNN model for COVID-19 detection using scatter images obtained from WBC sub (differential-DIFF) parameters instead of CT or X-Ray scans. As a data set, the scattergram images of 335 COVID-19 suspects without chronic disease, collected from the biochemistry department of Elazig Fethi Sekin City Hospital, are examined. At first, the data augmentation is performed by applying HSV(Hue, Saturation, Value) and CIE-1931(Commission Internationale de l'éclairage) conversions. Thus, three different image large sets are obtained as a result of raw, CIE-1931, and HSV conversions. Secondly, feature extraction is applied by giving these images as separate inputs to the CNN model. Finally, the ReliefF feature extraction algorithm is applied to determine the most dominant features in feature vectors and to determine the features that maximize classification accuracy. The obtaining feature vector is classified with high-performance SVM in binary classification. The overall accuracy is 95.2%, and the F1-Score is 94.1%. The results show that the method can successfully detect COVID -19 disease using scattergram images and is an alternative to CT and X-Ray scans.
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献