Author:
Kudabayev Ruslan,Suleimenov Ulanbator,Ristavletov Raimberdi,Kasimov Irkin,Kambarov Medetbek,Zhangabay Nurlan,Abshenov Khassen
Abstract
An increasing demand for energy and climate change encouraged the search for new ways of using renewable energy sources, including in building structures. At present, improving energy efficiency in buildings by integrating thermal energy storage materials is an urgent task. This paper proposes a mathematical model for the thermal regime in a building with a TES building envelope. The enclosure model consists of gypsum board with 25% of phase change material (PCM). The PCM layers of different thickness reduce room temperature and heat load. The effectiveness evaluation of the proposed model involved calculating the thermal conductivity using the finite difference method. The results show that the incorporation of thermal energy storage materials can reduce temperature fluctuations in the room and maintain a comfortable temperature for a long time (up to 8 hours). With an increase in the thickness of the thermal energy storage layer, the cooling time of the exterior surface of the internal wall also increases.
Publisher
International Information and Engineering Technology Association
Subject
Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献