Deep Neural Networks with Transfer Learning Model for Brain Tumors Classification

Author:

Bulla Premamayudu,Anantha Lakshmipathi,Peram Subbarao

Abstract

To investigate the effect of deep neural networks with transfer learning on MR images for tumor classification and improve the classification metrics by building image-level, stratified image-level, and patient-level models. Three thousand sixty-four T1-weighted magnetic resonance (MR) imaging from two hundred thirty-three patient cases of three brain tumors types (meningioma, glioma, and pituitary) were collected and it includes coronal, sagittal and axial views. The average number of brain images of each patient in three views is fourteen in the collected dataset. The classification is performed in a model of cross-trained with a pre-trained InceptionV3 model. Three image-level and one patient-level models are built on the MR imaging dataset. The models are evaluated in classification metrics such as accuracy, loss, precision, recall, kappa, and AUC. The proposed models are validated using four approaches: holdout validation, 10-fold cross-validation, stratified 10-fold cross-validation, and group 10-fold cross-validation. The generalization capability and improvement of the network are tested by using cropped and uncropped images of the dataset. The best results for group 10-fold cross-validation (patient-level) are obtained on the used dataset (ACC=99.82). A deep neural network with transfer learning can be used to classify brain tumors from MR images. Our patient-level network model noted the best results in classification to improve accuracy.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ARiViT: attention-based residual-integrated vision transformer for noisy brain medical image classification;The European Physical Journal Plus;2024-05-24

2. An Effective analysis of brain tumor detection using deep learning;EAI Endorsed Transactions on Pervasive Health and Technology;2024-04-03

3. Artificial Intelligence-Based Classification of Brain Tumors;Series in BioEngineering;2024

4. Deep CNNs for glioma grading on conventional MRIs: Performance analysis, challenges, and future directions;Mathematical Biosciences and Engineering;2024

5. Improved Brain Tumor Classification Made Possible Through the Use of Transfer Learning Model ResNet50;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3