Physical, Thermal and Mechanical Characterization of a New Material Composite Based on Fibrous Wood Particles of Date Palm Tree

Author:

Djoudi Tarek,Djemai Hocine,Hecini Mabrouk,Ferhat Ahmida

Abstract

The objective of this work is to valorize the waste from date palms tree which is often abandoned in the palm groves The aim is to produce a new composite based on this waste that can be used as an alternative material to the conventional insulators. The approach consists in making a composite material from petiole wood (WPC) in different particle sizes (0 to 1, 1 to 3 and 3 to 5) mm. We then characterized the physical, thermal and mechanical properties of this new material (WPC). The results obtained proved the relative anisotropy of the material and the effect of the particle size distribution on these properties. The composites (WPC) had low density in the range (0.16-0.56) g/cm3 and also exhibited low thermal conductivity, in the range (0.109-0.122)W/mK°. These weak properties make it possible to use (WPC) as an effective insulator. These characteristics were quite acceptable in comparison with other thermal insulation materials such as cork agglomerate and traditional wood. The interesting mechanical properties of the new composite (WPC) have been shown by the tensile tests and the three-point flexural tests. These results make it possible to valorize these materials (WPC) for possible industrial applications.

Publisher

International Information and Engineering Technology Association

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3