Deep and Statistical Features Classification Model for Electroencephalography Signals

Author:

Karaduman Mucahit,Karci Ali

Abstract

People strive to make sense of the complex electroencephalography (EEG) data generated by the brain. This study uses a prepared dataset to examine how easily people with alcohol use disorder (AUD) could be distinguished from healthy people. The signals from each electrode are connected to one another and are first represented as a single signal. The signal is then denoised through variation mode decomposition (VMD) during the preprocessing stage. The statistical and deep feature extraction phases are the two subsequent phases. The crucial step in the suggested strategy is to classify data using a combination of these two unique qualities. Deep and statistical feature performance was evaluated independently. Then, using the eigenvectors created by merging all of the collected features, classification was carried out using our DSFC (Deep - Statistical Features Classification) model. Although the classification accuracy rate using only statistical features was 81.2 percent and the classification accuracy rate using only deep learning was 95.71 percent, the classification accuracy rate utilizing hybrid features created using the suggested DSFC technique was 99.2%. Therefore, it can be proven that combining statistical and deep features can produce beneficial results.

Funder

Inonu University's Scientific Research Project Coordination Unit

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3