Author:
El-Behery Samy M.,Badawy Gamal H.,Mahfouz Fathi M.
Abstract
This paper presents a numerical study of the turbulent swirling flow in a horizontal tangential inlet tube. The commercial CFD code ANSYS FLUENT 15 was used for solving the set of governing equations using different turbulence models. Eight turbulence models are tested which are, standard k–ε, realizable k–ε, RNG k–ε, SST k–ω, Non-Linear k–ε, v2-f, RSM (Quadratic Pressure-Strain Model), and RSM (Stress-Omega Model). All these turbulence models are available directly in the ANSYS FLUENT except the non-linear k–ε which was implemented in the solver using User Defined Functions (UDF). The numerical predictions are compared with experimental measurements from literature for tangential, axial velocity profiles and Reynolds stresses profiles within the tested tube. The results indicated that the axial velocity is predicted fairly well by the standard k–ε model while the tangential velocity is well predicted by RSM. On the other hand, v2-f model predicts the Reynolds stresses better than the other tested models. The statistical analysis of turbulence model performance showed that, the RSM (Quadratic Pressure-Strain) model gives the best agreement with all data of experiments followed by non-linear k–ε and standard k–ε turbulence models.
Publisher
International Information and Engineering Technology Association
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献