Optimization of the Pressure Drop Prediction Model of Wellbore Multiphase Flow Based on Simultaneous Perturbation Stochastic Approximation

Author:

Zhou Donghui,Liao Ruiquan,Wang Wei,Ma Bin,Luo Wei

Abstract

In the process of gas lift design and condition diagnosis, the accuracy and timeliness of wellbore multiphase flow model prediction results are the basis for all subsequent work. However, for the commonly used wellbore multiphase flow pressure drop prediction models, there is a big deviation between the predicted value and the measured one, and the optimization based on the measured data is time-consuming, and it is difficult to obtain the optimal parameters of the model. Therefore, based on the well bore pressure distribution data measured quickly in area R of an oil field in Kazakhstan, a better prediction model of multiphase flow in the well bore was selected at first. Then, the simultaneous perturbation stochastic approximation (SPSA) algorithm was incorporated in the wellbore multiphase flow model to optimize the liquid holdup, which is the leading factor in the model. After repeated single well optimization and greedy selection, the optimal parameters suitable for the whole block were obtained. The example shows that the optimization speed is 10 times faster than that of Particle Swarm Optimization (PSO). After that, the optimized model was used to predict the wellbore pressure distribution, and it was found that the relative error between the measured value and the predicted one was less than 15%.

Funder

National Natural Science Foundation of China

Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3