Modeling and Simulation of Hourly Irradiance for Solar Applications in Chad: Case of the City of Abeche

Author:

Arim Ahmed Ismaël,Babikir Mahamat Hassane,Chara-Dackou Venant Sorel,Njomo Donatien

Abstract

In this paper, the general objective is to model and simulate the hourly irradiance followed by an assessment of the solar potential in the city of Abeche located in the climatic region of the Republic of Chad. Unlike previous work carried out in the study area on solar irradiance, two hourly solar irradiance estimation models (Capderou and Liu&Jordan) were simulated at varying tilt angles. An analysis of the quality of their estimation is carried out through statistical methods (MBD, RMSD, MAD) of error calculation. The results show that the first model is well adapted on a horizontal surface to estimate the solar radiation and also during the dry season when the surface is inclined. On the other hand, the second model is preferred during the rainy season when the surface is inclined. The solar energy over the entire area of Abeche is estimated at 427 GWh on a horizontal surface in January and 504 GWh for the month of August on a tilted surface. This can be exploited by all solar technologies or applications.

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3