Numerical Analysis and Optimization of Heat Dissipation of Mechanical Automation Equipment Based on Thermal Model

Author:

Zhang Miaomiao

Abstract

If the internal heat of mechanical automation equipment exceeds or does not reach the thermal equilibrium temperature range, it will adversely affect the operational reliability, environmental protection and production efficiency of the equipment. To tackle the problem, there has been some research on the internal heat dissipation of mechanical automation equipment, but mostly of the existing studies have simply aimed to change the parameters of the cooling system, and little has been done on the loading process and implementation details of the thermal model. Therefore, this paper provides numerical analysis and optimization of the space heat dissipation of mechanical automation equipment based on a thermal model. First, the heat dissipation mechanism of mechanical automation equipment was elaborated in detail, and the structure of the cooling system for mechanical automation equipment was given. Then, a spatial thermal model of mechanical automation equipment was established, and the heat dissipation design process of mechanical automation equipment was given. After that, the differences between the natural convection heat dissipation in large space and that in confined space inside mechanical automation equipment were explored. The experimental results verified the effectiveness of the numerical simulation model proposed in this paper.

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3