Experimental Investigation of Performance of Conventional Vapor Compression Refrigeration Cycle Using Geothermal Cooling in Extreme Hot Weather Conditions

Author:

Ismael Mays Alaa,Yahya Samir Gh.,Azzawi Itimad D.J.

Abstract

The well-known traditional vapor compression refrigeration cycle is considered to be the most effective technique used in the field of refrigeration and air-conditioning systems. It’s used almost in every facility including industrials, homes and food storages. There are some environmental hazards concerning the use of vapor-compression cycles such as global warming and ozone layer depletion mainly due to refrigerant's leakages. However, it's still considered as a leading technology for its capability of producing high cooling and heating powers with great coefficient of performance. The present work represents an experimental investigation of the effect of the condenser's temperature on the thermal performance of a conventional vapor compression refrigeration cycle. The geothermal cooling technique was introduced and utilized for cooling the temperature of the condenser that operates in harsh climate conditions. The experiment was performed using two additional heat exchangers for enabling heat exchange with geothermal temperature. The first heat exchanger (primary HX1) was connected directly to the condenser while the other one (secondary HX2) was installed inside the geothermal hole intended for heat exchange with the geothermal temperature. These exchangers (HX1 and HX2) were thermally connected via two PVC tubes with straight water circulating inside them (using a DC water pump). The experimental results proved the success of the current utilized method in improving the thermal performance of the system. Cooling the condenser via geothermal cooling has led to a considerable reduction in the temperature of the refrigerant and improved the overall performance of the cycle. The experimental apparatus showed an increase in both cooling capacity and COP by 25% and 21.5%, respectively. In addition, a considerable enhancement in the temperature of the evaporator was accomplished to reach a minimum temperature of 14.5ºC.

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3