Experimental and Numerical Investigation of Methane Combustion Combined with Biodiesel in Dual Fuel Mode

Author:

Legue Daniel Romeo Kamta,Chara-Dackou Venant Sorel,Babikir Mahamat Hassane,Bernard Bali Tamegue,Akong Marcel Obounou,Fouda Paul Henri Ekobena

Abstract

The present work investigates experimentally and numerically the combustion of methane coupled to biodiesel and diesel in dual fuel mode. The engine used is a single-cylinder Lister-Petter_01005299_TS1 modified for bi-fuel operation with a pre-chamber in the intake to allow methane to enter with the air. For this, we use three distinct fuels, conventional D100 diesel, B100 biodiesel and methane. The first two fuels are first burned independently under the same conditions independently under the same conditions using the double Wiebe phase. The numerical results obtained of this first combustion of B100 and D100 compared to the measured results show an agreement of 2% and 1.07% respectively for biodiesel and diesel allowing the validation of the numerical code. Next, we add methane to the air during the intake phase for the previously tested D100 and B100 fuels used as a pilot fuel in order to observe the impact of methane on cylinder pressure, nitrogen oxide emissions and heat release. The combustion model used is a two-zone 0D, one representing the burnt gases and the other the unburnt gases. The results showed a decrease in cylinder pressure and a large reduction in nitrogen oxide emissions of about 26.67% and about 48.76% when burning B100 biodiesel at medium load. The results also showed that the addition of methane to the air reduces the overall heat release of both fuels around TDC by 10.76% and 5.4% for biodiesel and diesel, respectively. But that in the diffusion phase, dual fuel combustion shows a higher heat release for diesel. It was also observed that peak pressures were reduced by 2.35% in the case of diesel compared to 7.45% for biodiesel.

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Effects of Dill Oil Biodiesel on CI Engine Emissions and Performance;International Journal of Heat and Technology;2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3