A New Control Strategy for Greenhouse Environment Control System Based on Inverse Model

Author:

Shi Jianfei,Li Mingze,Tong Baihong,Guo Zhenlin

Abstract

The greenhouse environment control system is a type of non-linear system since the temperature and humidity of the system are highly coupled. Besides, the time lag of the temperature and humidity control process is large, so it’s quite difficult to linearize and decouple the temperature and humidity of the system. To cope with this issue, this paper proposed a novel control strategy for greenhouse environment control system based on Back Propagation Neural Network (BPNN) and inverse model, the proposed method can perform inverse identification on the temperature and humidity control system to attain higher accuracy. Then, the inverse model and the original system were connected in series to form a pseudo linear system to realize the decoupled control of temperature and humidity. After that, aiming at the impact of some non-linear factors on the greenhouse environment system, this paper adopted the adaptive fuzzy Proportion Integration Differentiation (PID) controller to enhance the adaptability of the system, thereby reducing control error and the interference caused by non-linear factors of the temperature and humidity control system. At last, the experimental results showed that, the temperature error of the system could be controlled within 1.2℃ and the error of relative humidity was less than 2.5%. The proposed method can improve the control effect of the greenhouse environment to a certain extent, and it provides a novel approach of greenhouse control.

Funder

Natural Science Foundation of Heilongjiang province

Talent Training Program of the Heilongjiang Bayi Agricultural University

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3