Recognition and Detection of Greenhouse Tomatoes in Complex Environment

Author:

Gao Guohua,Wang Shuangyou,Shuai Ciyin,Zhang Zihua,Zhang Shuo,Feng Yongbing

Abstract

In the complex environment of greenhouses, it is important to provide the picking robot with accurate information. For this purpose, this paper improves the recognition and detection method based on you only look once v5 (YOLO v5). Firstly, adding data enhancement boosts the network generalizability. On the input end, the k-means clustering (KMC) was utilized to obtain more suitable anchors, aiming to increase detection accuracy. Secondly, it enhanced multi-scale feature extraction by improving the spatial pyramid pooling (SPP). Finally, non-maximum suppression (NMS) was optimized to improve the accuracy of the network. Experimental results show that the improved YOLO v5 achieved a mean average precision (mAP) of 97.3%, a recall of 90.5%, and an F1-score of 92.0%, while the original YOLO v5 had a mAP of 95.9% and a recall of 85.6%; the improved YOLO v5 took 57ms to identify and detect each image. The recognition accuracy and speed of the improved YOLOv5 are much better than those of faster region-based convolutional neural network (Faster R-CNN) and YOLO v3. After that, the improved network was applied to identify and detect images take in unstructured environments with different illumination, branch/leave occlusions, and overlapping fruits. The results show that the improved network has a good robustness, providing stable and reliable information for the operation of tomato picking robots.

Funder

S&T Program of Hebei

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection and Classification of Railway Track Surface Erosion-caused Holes and Scratches Defects Based on YOLOv5s;Tehnicki vjesnik - Technical Gazette;2024-08-15

2. YOLO-MSRF for lung nodule detection;Biomedical Signal Processing and Control;2024-08

3. YOLOv7-Branch: A Jujube Leaf Branch Detection Model for Agricultural Robot;Sensors;2024-07-26

4. Greenhouse Tomato Detection Based on CU-SSD;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

5. Optimizing Object Detection in YOLOv5 using Adaptive Genetic Algorithm: A Study on Population Sizes for Enhanced Accuracy;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3