Detection of Different DDoS Attacks Using Machine Learning Classification Algorithms

Author:

Dasari Kishore Babu,Devarakonda Nagaraju

Abstract

Cyber attacks are one of the world's most serious challenges nowadays. A Distributed Denial of Service (DDoS) attack is one of the most common cyberattacks that has affected availability, which is one of the most important principles of information security. It leads to so many negative consequences in terms of business, production, reputation, data theft, etc. It shows the importance of effective DDoS detection mechanisms to reduce losses. In order to detect DDoS attacks, statistical and data mining methods have not been given good accuracy values. Researchers get good accuracy values while detecting DDoS attacks by using classification algorithms. But researchers, use individual classification algorithms on generalized DDoS attacks. This study used six machine learning classification algorithms to detect eleven different DDoS attacks on different DDoS attack datasets. We used the CICDDoS2019 dataset which is collected from the Canadian Institute of Cyber security in this study. It contains eleven different DDoS attack datasets in CSV file format. On each DDoS attack, we evaluated the effectiveness of the classification methods Logistic regression, Decision tree, Random Forest, Ada boost, KNN, and Naive Bayes, and determined the best classification algorithms for detection.

Publisher

International Information and Engineering Technology Association

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3