A Face Detection Method Based on Skin Color Model and Improved AdaBoost Algorithm

Author:

Yang Xiaoying,Liang Nannan,Zhou Wei,Lu Hongmei

Abstract

This paper integrates skin color model and improved AdaBoost into a face detection method for high-resolution images with complex backgrounds. Firstly, the skin color areas were detected in a multi-color space. Each image was subject to adaptive brightness compensation, and converted into the YCbCr space, and a skin color model was established to solve face similarity. After eliminating the background interference by morphological method, the skin color areas were segmented to obtain the candidate face areas. Next, the inertia weight control factors and random search factor were introduced to optimize the global search ability of particle swarm optimization (PSO). The improved PSO was adopted to optimize the initial connection weights and output thresholds of the neural network. After that, a strong AdaBoost classifier was designed based on optimized weak BPNN classifiers, and the weight distribution strategy of AdaBoost was further improved. Finally, the improved AdaBoost was employed to detect the final face areas among the candidate areas. Simulation results show that our face detection method achieved high detection rate at a fast speed, and lowered false detection rate and missed detection rate.

Funder

The third batch of reserve candidates for academic and technical leaders

Teaching research project of Suzhou University

Key curriculum construction project

Large scale online open course (MOOC) demonstration project

Professional leader of Suzhou University

Anhui province's key R&D projects include Dabie Mountain and other old revolutionary base areas, Northern Anhui and poverty-stricken counties in 2019

Key scientific research project of Suzhou University

Multisource heterogeneous data acquisition, storage and intelligent analysis technology based on power big data platform

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3