Contactless Multi-biometric System Using Fingerprint and Palmprint Selfies

Author:

Herbadji Abderrahmane,Guermat Noubeil,Ziet Lahcene,Akhtar Zahid,Cheniti Mohamed,Herbadji Djamel

Abstract

Due to the COVID-19 pandemic, automated contactless person identification based on the human hand has become very vital and an appealing biometric trait. Since, people are expected to cover their faces with masks, and advised avoiding touching surfaces. It is well-known that usually contact-based hand biometrics suffer from issues like deformation due to uneven distribution of pressure or improper placement on sensor, and hygienic concerns. Whereas, to mitigate such problems, contactless imaging is expected to collect the hand biometrics information without any deformation and leading to higher person recognition accuracy; besides maintaining hygienic and pandemic concerns. Towards this aim, in this paper, an effective multi-biometric scheme for person authentication based on contactless fingerprint and palmprint selfies has been proposed. In this study, for simplicity and efficiency, three local descriptors, i.e., local phase quantization (LPQ), local Ternary patterns (LTP), and binarized statistical image features (BSIF), have been employed to extract salient features from contactless fingerprint and palmprint selfies. The score level fusion based multi-biometric system developed in this work combines the matching scores using two different fusion techniques, i.e., transformation based-rules like triangular norms and classifier based-rules like SVM. Experimental results on two publicly available databases (i.e., PolyU contactless to contact-based fingerprint database and IIT-Delhi touchless palmprint dataset) show that the proposed contactless multi-biometric selfie system can easily outperform uni-biometrics.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3