A Novel Convolutional Neural Network Based Model for Recognition and Classification of Apple Leaf Diseases

Author:

Yadav Divakar,Akanksha ,Yadav Arun Kumar

Abstract

Plants have a great role to play in biodiversity sustenance. These natural products not only push their demand for agricultural productivity, but also for the manufacturing of medical products, cosmetics and many more. Apple is one of the fruits that is known for its excellent nutritional properties and is therefore recommended for daily intake. However, due to various diseases in apple plants, farmers have to suffer from a huge loss. This not only causes severe effects on fruit’s health, but also decreases its overall productivity, quantity, and quality. A novel convolutional neural network (CNN) based model for recognition and classification of apple leaf diseases is proposed in this paper. The proposed model applies contrast stretching based pre-processing technique and fuzzy c-means (FCM) clustering algorithm for the identification of plant diseases. These techniques help to improve the accuracy of CNN model even with lesser size of dataset. 400 image samples (200 healthy, 200 diseased) of apple leaves have been used to train and validate the performance of the proposed model. The proposed model achieved an accuracy of 98%. To achieve this accuracy, it uses lesser data-set size as compared to other existing models, without compromising with the performance, which become possible due to use of contrast stretching pre-processing combined with FCM clustering algorithm.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved YOLOv5-based apple leaf disease detection method;Scientific Reports;2024-07-30

2. Hybrid CNN-SVM System for Multiclass Detection of Apple Leaf Diseases;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

3. Exploring the trend of recognizing apple leaf disease detection through machine learning: a comprehensive analysis using bibliometric techniques;Artificial Intelligence Review;2024-01-30

4. Severity Levels of Apple Disease Recognition Using CNN and Random Forest: An Integrated Approach;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

5. An Efficient Deep Transfer Learning based Apple Leaf Disease Classification;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3