Joint Penetration Monitoring in Low-Frequency Pulsed GTA Root Pass Welding of Medium-Thick Steel Plates

Author:

ZHU ZHENGWEN, ,ZHANG GANG,WANG KAIFEI,SHI YU,ZHU MING

Abstract

Welder-dependent manufacturing is no longer suitable for the modern production of a high-performance nuclear pressure container. The high-quality root pass welding of medium-thick steel plates is the main challenge to obtain a sturdy reactor vessel, especially to generate one-sided welding with back-formation bead without a backing. Herein, low frequency and large duty-cycle pulsed gas tungsten arc welding (GTAW) was employed to weld the medium-thick steel plates with a 5-mm root face and 2-mm root opening. The arc characteristic and weld pool dynamic behavior in the proposed GTA root pass welding was investigated by a high-speed camera, and a deflection phenomenon of arc tail flame was first found. The correlations of the characteristic parameters of the arc tail flame, including the deflected angle and length, with the weld joint penetration and welding speed were also analyzed in detail. The results showed a negative correlation to the welding speed and a positive correlation with the weld joint penetration. A sound weld bead was formed at a range from 15 deg and 20 mm to 19 deg and 27mm. Based on the above relationship, a new method using these two characteristic parameters was proposed to identify the weld joint penetration in the root pass welding, and its fundamentals were completely demonstrated by the dynamic change of the keyhole. Its feasibility was also demonstrated by the experiment combined with the weld pool dynamic-dependent theoretical analysis.

Publisher

American Welding Society

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3