Automated Recognition of Weld Pool Characteristics from Active Vision Sensing

Author:

CHENG YONGCHAO, ,WANG QIYUE,JIAO WENHUA,XIAO JUN,CHEN SHUJUN,ZHANG YUMING

Abstract

While penetration occurs underneath the workpiece, the raw information used to detect it during welding must be measurable to a sensor attached to the torch. Challenges are apparent because it is difficult to find such measurable raw information that fundamentally correlates with the phenomena occurring underneath. Additional challenges arise because the welding process is extremely complex such that analytically correlating any raw information to the underneath phenomena is practically impossible; therefore, handcrafted methods to propose features from raw information are human dependent and labor extensive. In this paper, the profile of the weld pool surface was proposed as the raw information. An innovative method was proposed to acquire it by projecting a single laser stripe on the weld pool surface transversely and intercepting its reflection from the mirror-like weld pool surface. To minimize human intervention, which can affect success, a deep-learning-based method was proposed to automatically recognize features from the single-stripe active vision images by fitting a convolutional neural network (CNN). To train the CNN, spot gas tungsten arc welding experiments were designed and conducted to collect the active vision images in pairs with their actual penetration states measured by a camera that views the backside surface of the workpiece. The CNN architecture was optimized by trying different hyperparameters, including kernel number, kernel size, and node number. The accuracy of the optimized model is about 98% and the cycle time in the personal computer is ~ 0.1 s, which fully meets the required engineering application.

Publisher

American Welding Society

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3