Control of Weld Residual Stress in a Thin Steel Plate through Low Transformation Temperature Welding Consumables

Author:

WU XIN, ,WANG ZHIFEN,YU ZHENZHEN,LIU STEPHEN,BUNN JEFFREY R.,KOLBUS LINDSAY,FENG ZHILI

Abstract

Low transformation temperature welding (LTTW) consumables are characterized by a low martensite start temperature and a large fraction of martensite forming in the weld. It can efficiently reduce the tensile residual stress because the volume expansion associated with the martensitic transformation compensates for the thermal contraction during cooling. In this work, a LTTW wire, designated as EH200B, was created for the arc welding of advanced high-strength steel thin plates. In comparison to conventional ER70S-3 wires, this LTTW wire generated an opposite distortion pattern. Neutron diffraction measurements along the center thickness of the welded plates showed the maximum residual stress along the longitudinal direction (LD) in the weld region, and the heat-affected zone (HAZ) immediately adjacent to the weld region was reduced from ~330 MPa to below 240 MPa by using the LTTW wire. A finite element (FE) model was developed to predict the residual stress distributions of the plates welded under these two wires. The simulation results showed reasonable agreement with the volume-average neutron diffraction data. Compressive residual stress in the weld region using the LTTW wire was predicted by the FE method. Electron backscattered diffraction and x-ray diffraction measurements confirmed ~90% martensite was present in the LTTW weld. The fatigue life of DP980 steel lap joint panels using EH200B wire nearly doubled that of ER70S-3 wire. This improvement was attributed to the high strength and low LD residual stress in the weld and HAZ immediately adjacent to the weld.

Publisher

American Welding Society

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3