Should We Account for Network Distances or Anisotropy in the Spatial Estimation of Missing Traffic Data?

Author:

Marques Samuel de FrançaORCID,Favero RenanORCID,Souza Pitombo CiraORCID

Abstract

In light of the unavailability of traffic volume data for all road segments, the scientific literature proposes estimating this variable using spatial interpolators. However, most of the methods found use the Euclidean distance between the database points as a proximity measure, in addition to ignoring the anisotropy of the phenomenon. Thus, the objective of the present study was to apply Ordinary Kriging (OK) with network distances and anisotropic OK in traffic volume data on highways in the state of São Paulo (Brazil), comparing its results to the traditional isotropic approach with Euclidean distances. Goodness-of-fit measures confirmed the good performance and better suitability of OK with network distances over the analyses that use Euclidean distances. Addressing the anisotropy of the traffic volume data also helped to improve the results. The proposed method can effectively support estimating traffic volume in segments without flow data.

Publisher

Associacao Nacional de Pesquisa e Ensino em Transportes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3