Avaliação da detecção automatizada de defeitos em pavimentos com YOLOv3: impacto das técnicas de coleta

Author:

Tavares de Melo Freitas Gabriel,Ferreira Nobre Júnior Ernesto,Calheiros Espíndola Aline

Abstract

Este estudo envolveu o treinamento de seis redes neurais com configurações personalizadas para detectar automaticamente defeitos nos pavimentos, utilizando o framework YOLOv3. A aquisição de imagens e vídeos retratando defeitos do pavimento foi realizada utilizando smartphones e câmeras de ação, levando à organização de seis datasets distintos. Cada rede neural foi submetida a treinamento e validação com o objetivo de atingir a precisão ideal na detecção automatizada de objetos. A aplicação do YOLOv3 possibilitou a realização eficiente de levantamentos de defeitos, contribuindo para o diagnóstico da qualidade do pavimento e fornecendo subsídios para a tomada de decisão na gestão dos transportes rodoviários. Ao final da análise, constatou-se que o método de enquadramento com maior eficácia atingiu uma taxa de precisão de 98%. Os resultados demonstram a eficácia do YOLOv3 na identificação dos defeitos, ressaltando a importância das técnicas de coleta e enquadramento e contribuindo para aumentando do conhecimento existente sobre detecção automatizada de defeitos em pavimentos.

Publisher

Associacao Nacional de Pesquisa e Ensino em Transportes

Reference14 articles.

1. Balbo, J.T. (2007) Pavimentação Asfáltica: Materiais, Projeto e Restauração. São Paulo: Oficina de Textos.

2. Espíndola, A.C.; G.T.M. Freitas and E.F. Nobre Jr. (2021) Pothole and patch detection on asphalt pavement using deep convolutional neural network. In Proceedings of the Joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering; III Pan- American Congress on Computational Mechanics, ABMEC-IACM. Rio de Janeiro: ABMEC, p. 1-7. Available at: (accessed 03/23/2022).

3. Everingham, M.; L.V. Gool; C.K.I. Williams et al. (2010) The pascal visual object classes (voc) challenge. International Journal of Computer Vision, v. 88, n. 2, p. 303-338. DOI: 10.1007/s11263-009-0275-4.

4. Haykin, S. (1998) Neural Networks: A Comprehensive Foundation. Hoboken: Prentice Hall PTR.

5. Hoang, N.D. (2018) An artificial intelligence method for asphalt pavement pothole detection using least squares support vector machine and neural network with steerable filter-based feature extraction. Advances in Civil Engineering, v. 2018, p. 7419058. DOI: http://doi.org/10.1155/2018/7419058.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3