Estimating Solar Energy within the scope of environmental factors by the Neural Network algorithm

Author:

Ayaz Atalan Yasemin1ORCID

Affiliation:

1. BOZOK ÜNİVERSİTESİ

Abstract

The efficiency of solar energy systems requires a complicated forecasting process due to the variability of sunlight and environmental conditions. Among environmental factors, cloud coverage (% range), temperature (0C), wind speed (Mph), and humidity (%) variables were taken into account in this study. Neural networks (NN), which are machine learning (ML) algorithms with a flexible structure that can define complex relationships and process large amounts of data for solar energy prediction, were used in this study. The NN algorithm showed a high performance, with mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and R-squared (R2) values calculated as 0.019, 0.139, 0.053, and 0.977, respectively. This study emphasized that solar energy predictions made with the NN algorithm, considering environmental factors, are an essential tool that helps use solar energy systems more efficiently and sustainably.

Publisher

Bandirma Onyedi Eylul University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3